Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Regen Med ; 18(12): 913-934, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38111999

ABSTRACT

This review explores the intricate relationship between acute respiratory distress syndrome (ARDS) and Type II diabetes mellitus (T2DM). It covers ARDS epidemiology, etiology and pathophysiology, along with current treatment trends and challenges. The lipopolysaccharides (LPS) role in ARDS and its association between non-communicable diseases and COVID-19 are discussed. The review highlights the therapeutic potential of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) for ARDS and T2DM, emphasizing their immunomodulatory effects. This review also underlines how T2DM exacerbates ARDS pathophysiology and discusses the potential of hUC-MSCs in modulating immune responses. In conclusion, the review highlights the multidisciplinary approach to managing ARDS and T2DM, focusing on inflammation, oxidative stress and potential therapy of hUC-MSCs in the future.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Respiratory Distress Syndrome , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/therapy , Respiratory Distress Syndrome/therapy , Inflammation , COVID-19/therapy , Umbilical Cord
2.
Pharmaceutics ; 14(3)2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35336023

ABSTRACT

Human umbilical cord mesenchymal stem cell-derived small extracellular vesicle (hUC-MSCs-sEVs) therapy has shown promising results to treat diabetes mellitus in preclinical studies. However, the dosage of MSCs-sEVs in animal studies, up to 10 mg/kg, was considered high and may be impractical for future clinical application. This study aims to investigate the efficacy of low-dose hUC-MSCs-sEVs treatment on human skeletal muscle cells (HSkMCs) and type 2 diabetes mellitus (T2DM) rats. Treatment with hUC-MSCs-sEVs up to 100 µg/mL for 48 h showed no significant cytotoxicity. Interestingly, 20 µg/mL of hUC-MSCs-sEVs-treated HSkMCs increased glucose uptake by 80-90% compared to untreated cells. The hUC-MSCs-sEVs treatment at 1 mg/kg improved glucose tolerance in T2DM rats and showed a protective effect on complete blood count. Moreover, an improvement in serum HbA1c was observed in diabetic rats treated with 0.5 and 1 mg/kg of hUC-MSCs-sEVs, and hUC-MSCs. The biochemical tests of hUC-MSCs-sEVs treatment groups showed no significant creatinine changes, elevated alanine aminotransferase (ALT) and alkaline phosphatase (ALP) levels compared to the normal group. Histological analysis revealed that hUC-MSCs-sEVs relieved the structural damage to the pancreas, kidney and liver. The findings suggest that hUC-MSCs-sEVs could ameliorate insulin resistance and exert protective effects on T2DM rats. Therefore, hUC-MSCs-sEVs could serve as a potential therapy for diabetes mellitus.

3.
Animals (Basel) ; 10(11)2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33217902

ABSTRACT

A high death rate among red hybrid tilapias was observed in a farm in Selangor, Malaysia, in January 2020. The affected fish appeared lethargic, isolated from schooling group, showed loss of appetite, red and haemorrhagic skin, exophthalmia and enlarged gall bladders. Histopathological assessment revealed deformation of kidney tubules, and severe congestion with infiltrations of inflammatory cells in the brains and kidneys. Syncytial cells and intracytoplasmic inclusion bodies were occasionally observed in the liver and brain sections. Tilapia Lake Virus (TiLV), Aeromonas hydrophila and Streptococcus agalactiae were identified in the affected fish, either through isolation or through PCR and sequencing analysis. The phylogenetic tree analysis revealed that the TiLV strain in this study was closely related to the previously reported Malaysian strain that was isolated in 2019. On the other hand, A. hydrophila and S. agalactiae were closer to Algerian and Brazilian strains, respectively. The multiple antibiotic resistance index for A. hydrophila and S. agalactiae was 0.50 and 0.25, respectively. Co-infections of virus and bacteria in cultured tilapia is a new threat for the tilapia industry.

SELECTION OF CITATIONS
SEARCH DETAIL
...